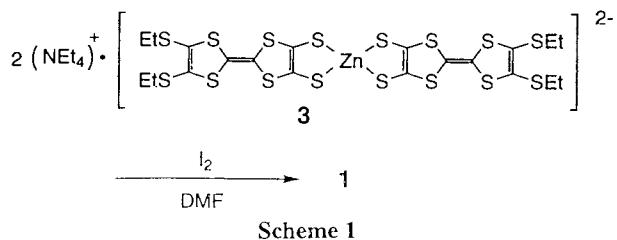
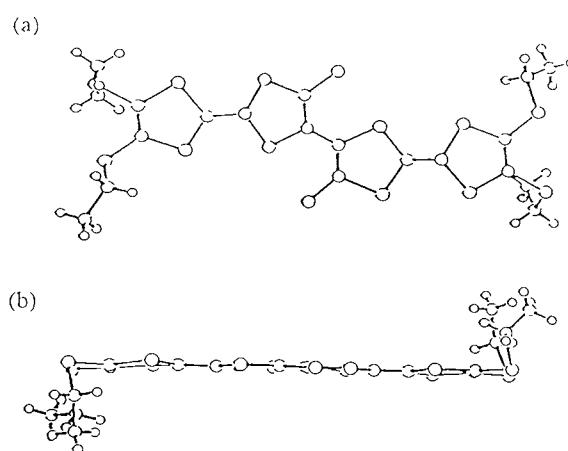

Bis(thioxo-diethylthiotetrathiafulvalenyl)ylidene, a New Donor Molecule with High Electron-Donating Ability Comparable to Tetrathiafulvalene

Kazumasa Ueda, Yutaka Kamata, Tsuyoshi Kominami, Masaki Iwamatsu, and Toyonari Sugimoto*
Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka 599-8570


(Received June 17, 1999; CL-990525)

A new donor molecule, bis(thioxo-diethylthiotetrathiafulvalenyl)ylidene (**1**) was obtained by the iodine oxidation of bis(tetraethylammonium) bis(2,3-diethylthiotetrathiafulvalenyl-6,7-dithiolato) zinc complex (**3**). The molecular skeleton of **1** except for the four ethyl groups is almost planar and significant intramolecular S-S contact is present. The redox process of **1** is composed of four electron-transfer steps, of which the first step has almost the same redox potential (+0.40 V vs. Ag/AgCl) to that of tetrakis(ethylthio)tetrathiafulvalene (TET-TTF). Very interestingly, **1** exhibited longest-wavelength electronic absorptions near 1100 nm.

Current interest is directed toward the synthesis and characterization of π/d molecular systems, in which conducting π electron and localized d spin coexist and interact significantly with each other.¹ The novel electrical conducting and magnetic properties are expected to emerge from the π/d molecular systems. A number of π/d molecular systems have so far been synthesized, most of which have, however, little interaction between both the electrons, except for $[\text{bis}(\text{ethylenedithio})\text{tetraphthalifulvalene}]_3 \cdot \text{CuBr}_4/\text{CuCl}_2\text{Br}_2$,² $[\text{bis}(\text{ethylenedithio})\text{tetraselenaphthalenyl}]_2 \cdot \text{FeCl}_4$ ³ and $(\text{dimethylidicyanoquinodimine})_2 \cdot \text{Cu}_4$.⁴ Under the circumstances new donor or acceptor molecules are now necessary, which can interact effectively with magnetic metal atoms. Very recently, we succeeded in the synthesis of such a new donor molecule, dimethylthiotetrathiafulvalenoquinone-1,3-dithiolemethide (**2**) and investigated electrical conducting and magnetic properties of **2**•CuBr₂ complex.⁵ In this communication we report the synthesis, molecular structure, and novel redox and electronic absorption properties of **1**, another donor molecule, which exhibits high electron-donating ability comparable to TET-TTF and is expected to capture several magnetic metal halides.

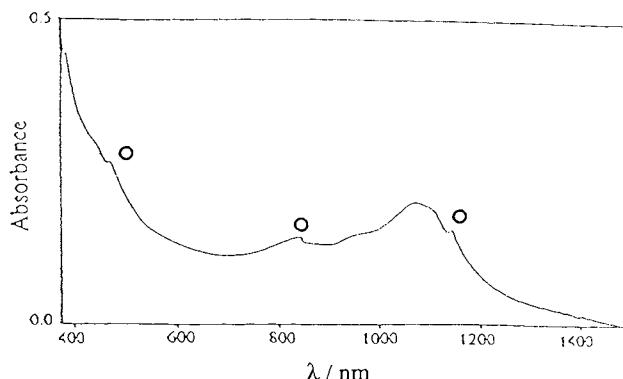


As is shown in Scheme 1, **1** was obtained by the reaction of **36** with 2 equiv. of iodine in DMF at room temperature under argon. The crude product was recrystallized from $\text{CS}_2/\text{iso-PrOH}$ to give black crystals (m.p. 190–192 °C) of **1** in 63% yield.⁷ The X-ray structure analysis was successfully performed.⁸ Figure 1 shows the molecular structure, in which the molecular skeleton except for four ethyl groups is almost planar as a result of tight intramolecular contact between the thiocarbonyl and 1,3-dithiolane sulfur atoms (2.84 Å, a markedly shorter distance than twice of van der Waals radius of sulfur atom (3.70 Å)).⁹ The average of C=S bond distances (1.63 and 1.67 Å) is close to that of **2**

Scheme 1

(1.66 Å), and the central C=C bond (1.42 Å) has a similar distance to that of benzene (1.39 Å)¹⁰, suggesting that there is very small contribution of a polar structure to the ground state of **1**. The following mechanism is most plausible as

Figure 1. The molecular structure of **1**: (a) top and (b) side views.


a formation of **1**. Thus, two 2,3-diethylthiotetrathia-fulvalenyl dithiolates in **3** are at first one-electron oxidized to produce the corresponding radical anions. The coupling of radical anions at the carbon atoms produces a dithiolate, which is converted to a disulfide by the second one-electron oxidation, followed by the elimination of two sulfur atoms to afford the final product.

The cyclic voltammetry measurement was performed for **1** and a reference compound, TET-TTF. The cyclic voltammogram (CV) of **1** measured in CH_2Cl_2 containing a supporting electrolyte, $(n\text{-Bu})_4\text{NPF}_6$ at 0 °C showed four pairs of reversible redox waves at +0.40, +0.53, +0.88 and +1.01 V vs. Ag/AgCl. The four-step redox process can be reasonably understood as a sequential electron-transfer of $\mathbf{1} \rightleftharpoons \mathbf{1}^{+} \rightleftharpoons \mathbf{1}^{2+} \rightleftharpoons \mathbf{1}^{3+} \rightleftharpoons \mathbf{1}^{4+}$ ($\mathbf{1}^{+}$, $\mathbf{1}^{2+}$, $\mathbf{1}^{3+}$ and $\mathbf{1}^{4+}$ are radical cation, dication, radical

Table 1. Redox potentials^a of **1**, **2** and TET-TTF

Donor	E ¹	E ²	E ³	E ⁴
1 ^b	+ 0.40	+ 0.53	+ 0.88	+ 1.01
2 ^c	+ 0.61	+ 0.77		
TET-TTF ^b	+ 0.45	+ 0.78		

^aV vs. Ag/AgCl. ^bMeasured in CH₂Cl₂ at 0 °C. ^cMeasured in DMF at 0 °C.

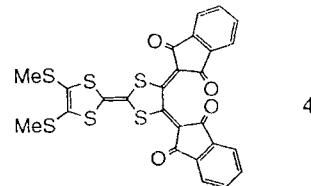


Figure 2. The electronic absorption spectrum of **1** ($3.00 \times 10^{-5} \text{ mol} \cdot \text{dm}^{-3}$) in CH₂Cl₂: (○) denotes aberration in absorbance by the mirror change.

trication and tetracation of **1**, respectively). Under the same condition the CV of TET-TTF was also measured and two pairs of reversible redox waves due to the electron-transfer of TET-TTF \rightleftharpoons TET-TTF⁺ \rightleftharpoons TET-TTF²⁺ (TET-TTF⁺ and TET-TTF²⁺ are radical cation and dication of TET-TTF, respectively) appeared at +0.45 and +0.78 V. Table 1 summarizes the redox potentials (E's) of **1**, TET-TTF and **2**. From comparison of the first redox potentials (E¹'s) between the three donors, the electron-donating ability of **1** is fairly higher than that of **2** and comparable to that of TET-TTF. Furthermore, very low second redox potential (E²) of **1** as compared to that of TET-TTF suggests markedly decreased Coulomb repulsion between two positive charges residing in **1**²⁺.

Very interestingly, the longest-wavelength absorptions of **1** reached a near-infrared region (> 800 nm). The electronic absorption spectrum of **1** measured in CH₂Cl₂ is shown in Figure 2. In the near-infrared region three absorption maxima were observed at 956 ($\epsilon_{\text{max}} = 4.07 \times 10^3$), 1084 (6.55×10^3) and 1118 nm (6.03×10^3), respectively. On the other hand, in the visible region of 400 to 800 nm there was no absorption maximum except for a shoulder absorption ($\epsilon_{\text{max}} = 9.54 \times 10^3$) at 454 nm. We previously found out the similar phenomenon in a tetrathiafulvalenoquinodimethane derivative (**4**), whose longest-wavelength electronic absorption ($\epsilon_{\text{max}} = 1.43 \times 10^4$) appeared

at 850 nm.¹¹ Accordingly, the longest-wavelength electronic

absorption of **1** is furthermore shifted by ca. 300 nm to the longer near-infrared region than that of **4**.

In summary, **1** is promising as a reliable donor molecule for a new type of π/d molecular system and also as a purely organic near-infrared light-absorption material.¹² We are now investigating the possibilities as above.

References and Notes

1. P. Cassoux, *Science*, **272**, 1277 (1996).
2. I. R. Marsden, M. L. Allan, R. H. Friend, M. Kurmoo, D. Kanazawa, P. Day, G. Bravic, D. Chasseau, L. Ducasse, and W. Hayes, *Phys. Rev.*, **B50**, 2118 (1994).
3. H. Kobayashi, H. Tomita, T. Naito, A. Kobayashi, F. Sakai, T. Watanabe, and P. Cassoux, *J. Am. Chem. Soc.*, **118**, 368 (1996).
4. A. Aumüller, P. Erk, G. Klebe, S. Hünig, J. U. von Schütz, and H. P. Werner, *Angew. Chem., Int. Ed. Engl.*, **25**, 740 (1986).
5. M. Iwamatsu, T. Kominami, K. Ueda, T. Sugimoto, H. Fujita, and T. Adachi, *Chem. Lett.*, **1999**, 329.
6. K. Ueda, M. Yamanoha, T. Sugimoto, H. Fujita, A. Ugawa, K. Yakushi, and K. Kano, *Chem. Lett.*, **1997**, 461.
7. The satisfactory elemental analysis result was obtained. The new donor is very soluble in CS₂, and sparingly soluble in CH₂Cl₂, CHCl₃ and THF.
8. Crystal data for **1**: C₂₀H₂₀S₁₄, $M = 709.22$, triclinic, space group *P*1, $a = 8.405(1)$, $b = 17.604(3)$, $c = 5.1846(9)$ Å, $\alpha = 97.64(2)$, $\beta = 105.73(1)$, $\gamma = 82.20(1)$ °, $Z = 1$, $V = 727.8(2)$ Å³, $D_c = 1.618$ g/cm³. $R = 0.057$ and $R_w = 0.075$ for 1601 observed reflections with $I > 2\sigma$ (I). The measurements were made by Rigaku AFC7R diffractometer with graphite monochromated Cu- $K\alpha$ radiation ($\lambda = 1.54178$ Å).
9. L. Pauling, "The Nature of The Chemical Bonding," 3rd ed, Cornell University Press, Ithaca, New York (1960).
10. The five-membered ring composed of the central C=C and C=S bonds, and one sulfur atom might become aromatic, judging from the extraordinary distances of the central C=C bond and S-S contact.
11. K. Ueda, M. Iwamatsu, T. Sugimoto, and H. Fujita, *Chem. Lett.*, **1997**, 1197.
12. J. Fabian, H. Nakazumi, and M. Matsuoka, *Chem. Rev.*, **92**, 1197 (1992).